《ChatGPT Prompt Engineering for Developers》中文笔记、一
项目简介
吴恩达《ChatGPT Prompt Engineering for Developers》课程中文版,主要内容为指导开发者如何构建 Prompt 并基于 OpenAI API 构建新的、基于 LLM 的应用,包括:书写 Prompt 的原则; 文本总结(如总结用户评论); 文本推断(如情感分类、主题提取); 文本转换(如翻译、自动纠错); 扩展(如书写邮件);
项目意义
LLM 正在逐步改变人们的生活,而对于开发者,如何基于 LLM 提供的 API 快速、便捷地开发一些具备更强能力、集成LLM 的应用,来便捷地实现一些更新颖、更实用的能力,是一个急需学习的重要能力。由吴恩达老师与 OpenAI 合作推出的 《ChatGPT Prompt Engineering for Developers》教程面向入门 LLM 的开发者,深入浅出地介绍了对于开发者,如何构造 Prompt 并基于 OpenAI 提供的 API 实现包括总结、推断、转换等多种常用功能,是入门 LLM 开发的经典教程。因此,我们将该课程翻译为中文,并复现其范例代码,也为原视频增加了中文字幕,支持国内中文学习者直接使用,以帮助中文学习者更好地学习 LLM 开发。
项目受众
适用于所有具备基础 Python 能力,想要入门 LLM 的开发者。
项目亮点
《ChatGPT Prompt Engineering for Developers》作为由吴恩达老师与 OpenAI 联合推出的官方教程,在可预见的未来会成为 LLM 的重要入门教程,但是目前还只支持英文版且国内访问受限,打造中文版且国内流畅访问的教程具有重要意义。
内容大纲
目录:
- 简介 Introduction
- 编写 Prompt 的原则 Guidelines
- 迭代式提示开发 Prompt Itrative
- 文本总结 Summarizing
- 文本推断 Inferring
- 文本转换 Transforming
- 文本扩展 Expanding
- 对话聊天 Chatbot
- 总结
第一章、简介
欢迎来到本课程,我们将为开发人员介绍 ChatGPT 提示工程。本课程由 Isa Fulford 教授和我一起授课。Isa Fulford 是 OpenAI 的技术团队成员,曾开发过受欢迎的 ChatGPT 检索插件,并且在教授人们如何在产品中使用 LLM 或 LLM 技术方面做出了很大贡献。她还参与编写了教授人们使用 Prompt 的 OpenAI cookbook。
互联网上有很多有关提示的材料,例如《30 prompts everyone has to know》之类的文章。这些文章主要集中在 ChatGPT Web 用户界面上,许多人在使用它执行特定的、通常是一次性的任务。但是,我认为 LLM 或大型语言模型作为开发人员的更强大功能是使用 API 调用到 LLM,以快速构建软件应用程序。我认为这方面还没有得到充分的重视。实际上,我们在 DeepLearning.AI 的姊妹公司 AI Fund 的团队一直在与许多初创公司合作,将这些技术应用于许多不同的应用程序上。看到 LLM API 能够让开发人员非常快速地构建应用程序,这真是令人兴奋。
在本课程中,我们将与您分享一些可能性以及如何实现它们的最佳实践。
随着大型语言模型(LLM)的发展,LLM 大致可以分为两种类型,即基础LLM和指令微调LLM。基础LLM是基于文本训练数据,训练出预测下一个单词能力的模型,其通常是在互联网和其他来源的大量数据上训练的。例如,如果你以“从前有一只独角兽”作为提示,基础LLM可能会继续预测“生活在一个与所有独角兽朋友的神奇森林中”。但是,如果你以“法国的首都是什么”为提示,则基础LLM可能会根据互联网上的文章,将答案预测为“法国最大的城市是什么?法国的人口是多少?”,因为互联网上的文章很可能是有关法国国家的问答题目列表。
许多 LLMs 的研究和实践的动力正在指令调整的 LLMs 上。指令调整的 LLMs 已经被训练来遵循指令。因此,如果你问它,“法国的首都是什么?”,它更有可能输出“法国的首都是巴黎”。指令调整的 LLMs 的训练通常是从已经训练好的基本 LLMs 开始,该模型已经在大量文本数据上进行了训练。然后,使用输入是指令、输出是其应该返回的结果的数据集来对其进行微调,要求它遵循这些指令。然后通常使用一种称为 RLHF(reinforcement learning from human feedback,人类反馈强化学习)的技术进行进一步改进,使系统更能够有帮助地遵循指令。
因为指令调整的 LLMs 已经被训练成有益、诚实和无害的,所以与基础LLMs相比,它们更不可能输出有问题的文本,如有害输出。许多实际使用场景已经转向指令调整的LLMs。您在互联网上找到的一些最佳实践可能更适用于基础LLMs,但对于今天的大多数实际应用,我们建议将注意力集中在指令调整的LLMs上,这些LLMs更容易使用,而且由于OpenAI和其他LLM公司的工作,它们变得更加安全和更加协调。
因此,本课程将重点介绍针对指令调整 LLM 的最佳实践,这是我们建议您用于大多数应用程序的。在继续之前,我想感谢 OpenAI 和 DeepLearning.ai 团队为 Izzy 和我所提供的材料作出的贡献。我非常感激 OpenAI 的 Andrew Main、Joe Palermo、Boris Power、Ted Sanders 和 Lillian Weng,他们参与了我们的头脑风暴材料的制定和审核,为这个短期课程编制了课程大纲。我也感激 Deep Learning 方面的 Geoff Ladwig、Eddy Shyu 和 Tommy Nelson 的工作。
当您使用指令调整 LLM 时,请类似于考虑向另一个人提供指令,假设它是一个聪明但不知道您任务的具体细节的人。当 LLM 无法正常工作时,有时是因为指令不够清晰。例如,如果您说“请为我写一些关于阿兰·图灵的东西”,清楚表明您希望文本专注于他的科学工作、个人生活、历史角色或其他方面可能会更有帮助。更多的,您还可以指定文本采取像专业记者写作的语调,或者更像是您向朋友写的随笔。
当然,如果你想象一下让一位新毕业的大学生为你完成这个任务,你甚至可以提前指定他们应该阅读哪些文本片段来写关于 Alan Turing的文本,那么这能够帮助这位新毕业的大学生更好地成功完成这项任务。下一章你会看到如何让提示清晰明确,创建提示的一个重要原则,你还会从提示的第二个原则中学到给LLM时间去思考。
第二章、编写 Prompt 的原则
本章的主要内容为编写 Prompt 的原则,在本章中,我们将给出两个编写 Prompt 的原则与一些相关的策略,你将练习基于这两个原则来编写有效的 Prompt,从而便捷而有效地使用 LLM。
一、环境配置
本教程使用 OpenAI 所开放的 ChatGPT API,因此你需要首先拥有一个 ChatGPT 的 API_KEY(也可以直接访问官方网址在线测试),然后需要安装 openai 的第三方库
首先需要安装所需第三方库:
openai:
pip install openai
dotenv:
pip install -U python-dotenv
# 将自己的 API-KEY 导入系统环境变量
!export OPENAI_API_KEY='api-key'
import openai
import os
from dotenv import load_dotenv, find_dotenv
# 导入第三方库
_ = load_dotenv(find_dotenv())
# 读取系统中的环境变量
openai.api_key = os.getenv('OPENAI_API_KEY')
# 设置 API_KEY
我们将在后续课程中深入探究 OpenAI 提供的 ChatCompletion API 的使用方法,在此处,我们先将它封装成一个函数,你无需知道其内部机理,仅需知道调用该函数输入 Prompt 其将会给出对应的 Completion 即可。
# 一个封装 OpenAI 接口的函数,参数为 Prompt,返回对应结果
def get_completion(prompt, model="gpt-3.5-turbo"):
'''
prompt: 对应的提示
model: 调用的模型,默认为 gpt-3.5-turbo(ChatGPT),有内测资格的用户可以选择 gpt-4
'''
messages = [{"role": "user", "content": prompt}]
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=0, # 模型输出的温度系数,控制输出的随机程度
)
# 调用 OpenAI 的 ChatCompletion 接口
return response.choices[0].message["content"]
二、两个基本原则
原则一:编写清晰、具体的指令
你应该通过提供尽可能清晰和具体的指令来表达您希望模型执行的操作。这将引导模型给出正确的输出,并减少你得到无关或不正确响应的可能。编写清晰的指令不意味着简短的指令,因为在许多情况下,更长的提示实际上更清晰且提供了更多上下文,这实际上可能导致更详细更相关的输出。
策略一:使用分隔符清晰地表示输入的不同部分,分隔符可以是:`
,"",<>,\<tag>,<\tag>等
你可以使用任何明显的标点符号将特定的文本部分与提示的其余部分分开。这可以是任何可以使模型明确知道这是一个单独部分的标记。使用分隔符是一种可以避免提示注入的有用技术。提示注入是指如果用户将某些输入添加到提示中,则可能会向模型提供与您想要执行的操作相冲突的指令,从而使其遵循冲突的指令而不是执行您想要的操作。即,输入里面可能包含其他指令,会覆盖掉你的指令。对此,使用分隔符是一个不错的策略。
以下是一个例子,我们给出一段话并要求 GPT 进行总结,在该示例中我们使用 `
来作为分隔符:
text = f"""
你应该提供尽可能清晰、具体的指示,以表达你希望模型执行的任务。\
这将引导模型朝向所需的输出,并降低收到无关或不正确响应的可能性。\
不要将写清晰的提示与写简短的提示混淆。\
在许多情况下,更长的提示可以为模型提供更多的清晰度和上下文信息,从而导致更详细和相关的输出。
"""
# 需要总结的文本内容
prompt = f"""
把用三个反引号括起来的文本总结成一句话。
```{text}```
"""
# 指令内容,使用 ``` 来分隔指令和待总结的内容
response = get_completion(prompt)
print(response)
提供清晰具体的指示,避免无关或不正确响应,不要混淆写清晰和写简短,更长的提示可以提供更多清晰度和上下文信息,导致更详细和相关的输出。
策略二:要求一个结构化的输出,可以是 Json、HTML 等格式
第二个策略是要求生成一个结构化的输出,这可以使模型的输出更容易被我们解析,例如,你可以在 Python 中将其读入字典或列表中。。
在以下示例中,我们要求 GPT 生成三本书的标题、作者和类别,并要求 GPT 以 Json 的格式返回给我们,为便于解析,我们指定了 Json 的键。
prompt = f"""
请生成包括书名、作者和类别的三本虚构书籍清单,\
并以 JSON 格式提供,其中包含以下键:book_id、title、author、genre。
"""
response = get_completion(prompt)
print(response)
{
"books": [
{
"book_id": 1,
"title": "The Shadow of the Wind",
"author": "Carlos Ruiz Zafón",
"genre": "Mystery"
},
{
"book_id": 2,
"title": "The Name of the Wind",
"author": "Patrick Rothfuss",
"genre": "Fantasy"
},
{
"book_id": 3,
"title": "The Hitchhiker's Guide to the Galaxy",
"author": "Douglas Adams",
"genre": "Science Fiction"
}
]
}
策略三:要求模型检查是否满足条件
如果任务做出的假设不一定满足,我们可以告诉模型先检查这些假设,如果不满足,指示并停止执行。你还可以考虑潜在的边缘情况以及模型应该如何处理它们,以避免意外的错误或结果。
在如下示例中,我们将分别给模型两段文本,分别是制作茶的步骤以及一段没有明确步骤的文本。我们将要求模型判断其是否包含一系列指令,如果包含则按照给定格式重新编写指令,不包含则回答未提供步骤。
# 有步骤的文本
text_1 = f"""
泡一杯茶很容易。首先,需要把水烧开。\
在等待期间,拿一个杯子并把茶包放进去。\
一旦水足够热,就把它倒在茶包上。\
等待一会儿,让茶叶浸泡。几分钟后,取出茶包。\
如果你愿意,可以加一些糖或牛奶调味。\
就这样,你可以享受一杯美味的茶了。
"""
prompt = f"""
您将获得由三个引号括起来的文本。\
如果它包含一系列的指令,则需要按照以下格式重新编写这些指令:
第一步 - ...
第二步 - …
…
第N步 - …
如果文本中不包含一系列的指令,则直接写“未提供步骤”。"
\"\"\"{text_1}\"\"\"
"""
response = get_completion(prompt)
print("Text 1 的总结:")
print(response)
Text 1 的总结:
第一步 - 把水烧开。
第二步 - 拿一个杯子并把茶包放进去。
第三步 - 把烧开的水倒在茶包上。
第四步 - 等待几分钟,让茶叶浸泡。
第五步 - 取出茶包。
第六步 - 如果你愿意,可以加一些糖或牛奶调味。
第七步 - 就这样,你可以享受一杯美味的茶了。
# 无步骤的文本
text_2 = f"""
今天阳光明媚,鸟儿在歌唱。\
这是一个去公园散步的美好日子。\
鲜花盛开,树枝在微风中轻轻摇曳。\
人们外出享受着这美好的天气,有些人在野餐,有些人在玩游戏或者在草地上放松。\
这是一个完美的日子,可以在户外度过并欣赏大自然的美景。
"""
prompt = f"""
您将获得由三个引号括起来的文本。\
如果它包含一系列的指令,则需要按照以下格式重新编写这些指令:
第一步 - ...
第二步 - …
…
第N步 - …
如果文本中不包含一系列的指令,则直接写“未提供步骤”。"
\"\"\"{text_2}\"\"\"
"""
response = get_completion(prompt)
print("Text 2 的总结:")
print(response)
Text 2 的总结:
未提供步骤。
策略四:提供少量示例
即在要求模型执行实际任务之前,提供给它少量成功执行任务的示例。
例如,在以下的示例中,我们告诉模型其任务是以一致的风格回答问题,并先给它一个孩子和一个祖父之间的对话的例子。孩子说,“教我耐心”,祖父用这些隐喻回答。因此,由于我们已经告诉模型要以一致的语气回答,现在我们说“教我韧性”,由于模型已经有了这个少样本示例,它将以类似的语气回答下一个任务。
prompt = f"""
你的任务是以一致的风格回答问题。
<孩子>: 教我耐心。
<祖父母>: 挖出最深峡谷的河流源于一处不起眼的泉眼;最宏伟的交响乐从单一的音符开始;最复杂的挂毯以一根孤独的线开始编织。
<孩子>: 教我韧性。
"""
response = get_completion(prompt)
print(response)
<祖父母>: 韧性就像是一棵树,它需要经历风吹雨打、寒冬酷暑,才能成长得更加坚强。在生活中,我们也需要经历各种挫折和困难,才能锻炼出韧性。记住,不要轻易放弃,坚持下去,你会发现自己变得更加坚强。
原则二:给模型时间去思考
如果模型匆忙地得出了错误的结论,您应该尝试重新构思查询,请求模型在提供最终答案之前进行一系列相关的推理。换句话说,如果您给模型一个在短时间或用少量文字无法完成的任务,它可能会猜测错误。这种情况对人来说也是一样的。如果您让某人在没有时间计算出答案的情况下完成复杂的数学问题,他们也可能会犯错误。因此,在这些情况下,您可以指示模型花更多时间思考问题,这意味着它在任务上花费了更多的计算资源。
策略一:指定完成任务所需的步骤
接下来我们将通过给定一个复杂任务,给出完成该任务的一系列步骤,来展示这一策略的效果
首先我们描述了杰克和吉尔的故事,并给出一个指令。该指令是执行以下操作。首先,用一句话概括三个反引号限定的文本。第二,将摘要翻译成法语。第三,在法语摘要中列出每个名称。第四,输出包含以下键的 JSON 对象:法语摘要和名称数。然后我们要用换行符分隔答案。
text = f"""
在一个迷人的村庄里,兄妹杰克和吉尔出发去一个山顶井里打水。\
他们一边唱着欢乐的歌,一边往上爬,\
然而不幸降临——杰克绊了一块石头,从山上滚了下来,吉尔紧随其后。\
虽然略有些摔伤,但他们还是回到了温馨的家中。\
尽管出了这样的意外,他们的冒险精神依然没有减弱,继续充满愉悦地探索。
"""
# example 1
prompt_1 = f"""
执行以下操作:
1-用一句话概括下面用三个反引号括起来的文本。
2-将摘要翻译成法语。
3-在法语摘要中列出每个人名。
4-输出一个 JSON 对象,其中包含以下键:French_summary,num_names。
请用换行符分隔您的答案。
Text:
```{text}```
"""
response = get_completion(prompt_1)
print("prompt 1:")
print(response)
prompt 1:
1-兄妹在山顶井里打水时发生意外,但仍然保持冒险精神。
2-Dans un charmant village, les frère et sœur Jack et Jill partent chercher de l'eau dans un puits au sommet de la montagne. Malheureusement, Jack trébuche sur une pierre et tombe de la montagne, suivi de près par Jill. Bien qu'ils soient légèrement blessés, ils retournent chez eux chaleureusement. Malgré cet accident, leur esprit d'aventure ne diminue pas et ils continuent à explorer joyeusement.
3-Jack, Jill
4-{
"French_summary": "Dans un charmant village, les frère et sœur Jack et Jill partent chercher de l'eau dans un puits au sommet de la montagne. Malheureusement, Jack trébuche sur une pierre et tombe de la montagne, suivi de près par Jill. Bien qu'ils soient légèrement blessés, ils retournent chez eux chaleureusement. Malgré cet accident, leur esprit d'aventure ne diminue pas et ils continuent à explorer joyeusement.",
"num_names": 2
}
上述输出仍然存在一定问题,例如,键“姓名”会被替换为法语,因此,我们给出一个更好的 Prompt,该 Prompt 指定了输出的格式
prompt_2 = f"""
1-用一句话概括下面用<>括起来的文本。
2-将摘要翻译成英语。
3-在英语摘要中列出每个名称。
4-输出一个 JSON 对象,其中包含以下键:English_summary,num_names。
请使用以下格式:
文本:<要总结的文本>
摘要:<摘要>
翻译:<摘要的翻译>
名称:<英语摘要中的名称列表>
输出 JSON:<带有 English_summary 和 num_names 的 JSON>
Text: <{text}>
"""
response = get_completion(prompt_2)
print("\nprompt 2:")
print(response)
prompt 2:
摘要:兄妹杰克和吉尔在迷人的村庄里冒险,不幸摔伤后回到家中,但仍然充满冒险精神。
翻译:In a charming village, siblings Jack and Jill set out to fetch water from a mountaintop well. While climbing and singing, Jack trips on a stone and tumbles down the mountain, with Jill following closely behind. Despite some bruises, they make it back home safely. Their adventurous spirit remains undiminished as they continue to explore with joy.
名称:Jack,Jill
输出 JSON:{"English_summary": "In a charming village, siblings Jack and Jill set out to fetch water from a mountaintop well. While climbing and singing, Jack trips on a stone and tumbles down the mountain, with Jill following closely behind. Despite some bruises, they make it back home safely. Their adventurous spirit remains undiminished as they continue to explore with joy.", "num_names": 2}
策略二:指导模型在下结论之前找出一个自己的解法
有时候,在明确指导模型在做决策之前要思考解决方案时,我们会得到更好的结果。
接下来我们会给出一个问题和一个学生的解答,要求模型判断解答是否正确
prompt = f"""
判断学生的解决方案是否正确。
问题:
我正在建造一个太阳能发电站,需要帮助计算财务。
土地费用为 100美元/平方英尺
我可以以 250美元/平方英尺的价格购买太阳能电池板
我已经谈判好了维护合同,每年需要支付固定的10万美元,并额外支付每平方英尺10美元
作为平方英尺数的函数,首年运营的总费用是多少。
学生的解决方案:
设x为发电站的大小,单位为平方英尺。
费用:
土地费用:100x
太阳能电池板费用:250x
维护费用:100,000美元+100x
总费用:100x+250x+100,000美元+100x=450x+100,000美元
"""
response = get_completion(prompt)
print(response)
学生的解决方案是正确的。
但是注意,学生的解决方案实际上是错误的。
我们可以通过指导模型先自行找出一个解法来解决这个问题。
在接下来这个 Prompt 中,我们要求模型先自行解决这个问题,再根据自己的解法与学生的解法进行对比,从而判断学生的解法是否正确。同时,我们给定了输出的格式要求。通过明确步骤,让模型有更多时间思考,有时可以获得更准确的结果。在这个例子中,学生的答案是错误的,但如果我们没有先让模型自己计算,那么可能会被误导以为学生是正确的。
prompt = f"""
请判断学生的解决方案是否正确,请通过如下步骤解决这个问题:
步骤:
首先,自己解决问题。
然后将你的解决方案与学生的解决方案进行比较,并评估学生的解决方案是否正确。在自己完成问题之前,请勿决定学生的解决方案是否正确。
使用以下格式:
问题:问题文本
学生的解决方案:学生的解决方案文本
实际解决方案和步骤:实际解决方案和步骤文本
学生的解决方案和实际解决方案是否相同:是或否
学生的成绩:正确或不正确
问题:
我正在建造一个太阳能发电站,需要帮助计算财务。
- 土地费用为每平方英尺100美元
- 我可以以每平方英尺250美元的价格购买太阳能电池板
- 我已经谈判好了维护合同,每年需要支付固定的10万美元,并额外支付每平方英尺10美元
作为平方英尺数的函数,首年运营的总费用是多少。
学生的解决方案:
设x为发电站的大小,单位为平方英尺。
费用:
1. 土地费用:100x
2. 太阳能电池板费用:250x
3. 维护费用:100,000+100x
总费用:100x+250x+100,000+100x=450x+100,000
实际解决方案和步骤:
"""
response = get_completion(prompt)
print(response)
正确的解决方案和步骤:
1. 计算土地费用:100美元/平方英尺 * x平方英尺 = 100x美元
2. 计算太阳能电池板费用:250美元/平方英尺 * x平方英尺 = 250x美元
3. 计算维护费用:10万美元 + 10美元/平方英尺 * x平方英尺 = 10万美元 + 10x美元
4. 计算总费用:100x美元 + 250x美元 + 10万美元 + 10x美元 = 360x + 10万美元
学生的解决方案和实际解决方案是否相同:否
学生的成绩:不正确
三、局限性
虚假知识:模型偶尔会生成一些看似真实实则编造的知识
如果模型在训练过程中接触了大量的知识,它并没有完全记住所见的信息,因此它并不很清楚自己知识的边界。这意味着它可能会尝试回答有关晦涩主题的问题,并编造听起来合理但实际上并不正确的答案。我们称这些编造的想法为幻觉。
例如在如下示例中,我们要求告诉我们 Boie 公司生产的 AeroGlide UltraSlim Smart Toothbrush 产品的信息,事实上,这个公司是真实存在的,但产品是编造的,模型则会一本正经地告诉我们编造的知识。
prompt = f"""
告诉我 Boie 公司生产的 AeroGlide UltraSlim Smart Toothbrush 的相关信息
"""
response = get_completion(prompt)
print(response)
Boie公司生产的AeroGlide UltraSlim Smart Toothbrush是一款智能牙刷,具有以下特点:
1. 超薄设计:刷头仅有0.8毫米的厚度,可以更容易地进入口腔深处,清洁更彻底。
2. 智能感应:牙刷配备了智能感应技术,可以自动识别刷头的位置和方向,确保每个部位都得到充分的清洁。
3. 高效清洁:牙刷采用了高速振动技术,每分钟可达到40000次,可以有效去除牙菌斑和污渍。
4. 轻松携带:牙刷采用了便携式设计,可以轻松放入口袋或旅行包中,随时随地进行口腔清洁。
5. 环保材料:牙刷采用了环保材料制造,不含有害物质,对环境友好。
总之,Boie公司生产的AeroGlide UltraSlim Smart Toothbrush是一款高效、智能、环保的牙刷,可以帮助用户轻松保持口腔健康。
模型会输出看上去非常真实的编造知识,这有时会很危险。因此,请确保使用我们在本节中介绍的一些技巧,以尝试在构建自己的应用程序时避免这种情况。这是模型已知的一个弱点,也是我们正在积极努力解决的问题。在你希望模型根据文本生成答案的情况下,另一种减少幻觉的策略是先要求模型找到文本中的任何相关引用,然后要求它使用这些引用来回答问题,这种追溯源文档的方法通常对减少幻觉非常有帮助。
说明:在本教程中,我们使用 \ 来使文本适应屏幕大小以提高阅读体验,GPT 并不受 \ 的影响,但在你调用其他大模型时,需额外考虑 \ 是否会影响模型性能
第三章、迭代式提示开发
当使用 LLM 构建应用程序时,我从来没有在第一次尝试中就成功使用最终应用程序中所需的 Prompt。但这并不重要,只要您有一个好的迭代过程来不断改进您的 Prompt,那么你就能够得到一个适合任务的 Prompt。我认为在提示方面,第一次成功的几率可能会高一些,但正如上所说,第一个提示是否有效并不重要。最重要的是为您的应用程序找到有效提示的过程。
因此,在本章中,我们将以从产品说明书中生成营销文案这一示例,展示一些框架,以提示你思考如何迭代地分析和完善你的 Prompt。
如果您之前与我一起上过机器学习课程,您可能见过我使用的一张图表,说明了机器学习开发的流程。通常是先有一个想法,然后再实现它:编写代码,获取数据,训练模型,这会给您一个实验结果。然后您可以查看输出结果,进行错误分析,找出它在哪里起作用或不起作用,甚至可以更改您想要解决的问题的确切思路或方法,然后更改实现并运行另一个实验等等,反复迭代,以获得有效的机器学习模型。在编写 Prompt 以使用 LLM 开发应用程序时,这个过程可能非常相似,您有一个关于要完成的任务的想法,可以尝试编写第一个 Prompt,满足上一章说过的两个原则:清晰明确,并且给系统足够的时间思考。然后您可以运行它并查看结果。如果第一次效果不好,那么迭代的过程就是找出为什么指令不够清晰或为什么没有给算法足够的时间思考,以便改进想法、改进提示等等,循环多次,直到找到适合您的应用程序的 Prompt。
环境配置
同上一章,我们首先需要配置使用 OpenAI API 的环境
import openai
import os
from dotenv import load_dotenv, find_dotenv
# 导入第三方库
_ = load_dotenv(find_dotenv())
# 读取系统中的环境变量
openai.api_key = os.getenv('OPENAI_API_KEY')
# 设置 API_KEY
# 一个封装 OpenAI 接口的函数,参数为 Prompt,返回对应结果
def get_completion(prompt, model="gpt-3.5-turbo"):
'''
prompt: 对应的提示
model: 调用的模型,默认为 gpt-3.5-turbo(ChatGPT),有内测资格的用户可以选择 gpt-4
'''
messages = [{"role": "user", "content": prompt}]
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=0, # 模型输出的温度系数,控制输出的随机程度
)
# 调用 OpenAI 的 ChatCompletion 接口
return response.choices[0].message["content"]
任务——从产品说明书生成一份营销产品描述
这里有一个椅子的产品说明书,描述说它是一个中世纪灵感家族的一部分,讨论了构造、尺寸、椅子选项、材料等等,产地是意大利。假设您想要使用这份说明书帮助营销团队为在线零售网站撰写营销式描述:
# 示例:产品说明书
fact_sheet_chair = """
概述
美丽的中世纪风格办公家具系列的一部分,包括文件柜、办公桌、书柜、会议桌等。
多种外壳颜色和底座涂层可选。
可选塑料前后靠背装饰(SWC-100)或10种面料和6种皮革的全面装饰(SWC-110)。
底座涂层选项为:不锈钢、哑光黑色、光泽白色或铬。
椅子可带或不带扶手。
适用于家庭或商业场所。
符合合同使用资格。
结构
五个轮子的塑料涂层铝底座。
气动椅子调节,方便升降。
尺寸
宽度53厘米|20.87英寸
深度51厘米|20.08英寸
高度80厘米|31.50英寸
座椅高度44厘米|17.32英寸
座椅深度41厘米|16.14英寸
选项
软地板或硬地板滚轮选项。
两种座椅泡沫密度可选:中等(1.8磅/立方英尺)或高(2.8磅/立方英尺)。
无扶手或8个位置PU扶手。
材料
外壳底座滑动件
改性尼龙PA6/PA66涂层的铸铝。
外壳厚度:10毫米。
座椅
HD36泡沫
原产国
意大利
"""
# 提示:基于说明书创建营销描述
prompt = f"""
你的任务是帮助营销团队基于技术说明书创建一个产品的营销描述。
根据```标记的技术说明书中提供的信息,编写一个产品描述。
技术说明: ```{fact_sheet_chair}```
"""
response = get_completion(prompt)
print(response)
产品描述:
我们自豪地推出美丽的中世纪风格办公家具系列,其中包括文件柜、办公桌、书柜、会议桌等。我们的产品采用多种外壳颜色和底座涂层,以满足您的个性化需求。您可以选择塑料前后靠背装饰(SWC-100)或10种面料和6种皮革的全面装饰(SWC-110),以使您的办公室更加舒适和时尚。
我们的底座涂层选项包括不锈钢、哑光黑色、光泽白色或铬,以满足您的不同需求。椅子可带或不带扶手,适用于家庭或商业场所。我们的产品符合合同使用资格,为您提供更加可靠的保障。
我们的产品采用五个轮子的塑料涂层铝底座,气动椅子调节,方便升降。尺寸为宽度53厘米|20.87英寸,深度51厘米|20.08英寸,高度80厘米|31.50英寸,座椅高度44厘米|17.32英寸,座椅深度41厘米|16.14英寸,为您提供舒适的使用体验。
我们的产品还提供软地板或硬地板滚轮选项,两种座椅泡沫密度可选:中等(1.8磅/立方英尺)或高(2.8磅/立方英尺),以及无扶手或8个位置PU扶手,以满足您的不同需求。
我们的产品采用改性尼龙PA6/PA66涂层的铸铝外壳底座滑动件,外壳厚度为10毫米,座椅采用HD36泡沫,为您提供更加舒适的使用体验。我们的产品原产国为意大利,为您提供更加优质的品质保证。
问题一:生成文本太长
它似乎很好地写了一个描述,介绍了一个惊人的中世纪灵感办公椅,很好地完成了要求,即从技术说明书开始编写产品描述。但是当我看到这个时,我会觉得这个太长了。
所以我有了一个想法。我写了一个提示,得到了结果。但是我对它不是很满意,因为它太长了,所以我会澄清我的提示,并说最多使用50个字。
因此,我通过要求它限制生成文本长度来解决这一问题
# 优化后的 Prompt,要求生成描述不多于 50 词
prompt = f"""
Your task is to help a marketing team create a
description for a retail website of a product based
on a technical fact sheet.
Write a product description based on the information
provided in the technical specifications delimited by
triple backticks.
Use at most 50 words.
Technical specifications: ```{fact_sheet_chair}```
"""
response = get_completion(prompt)
print(response)
Introducing our beautiful medieval-style office furniture collection, including filing cabinets, desks, bookcases, and conference tables. Choose from a variety of shell colors and base coatings, with optional plastic or fabric/leather decoration. The chair features a plastic-coated aluminum base with five wheels and pneumatic height adjustment. Perfect for home or commercial use. Made in Italy.
取出回答并根据空格拆分,答案为54个字,较好地完成了我的要求
lst = response.split()
print(len(lst))
54
# 优化后的 Prompt,要求生成描述不多于 50 词
prompt = f"""
您的任务是帮助营销团队基于技术说明书创建一个产品的零售网站描述。
根据```标记的技术说明书中提供的信息,编写一个产品描述。
使用最多50个词。
技术规格:```{fact_sheet_chair}```
"""
response = get_completion(prompt)
print(response)
中世纪风格办公家具系列,包括文件柜、办公桌、书柜、会议桌等。多种颜色和涂层可选,可带或不带扶手。底座涂层选项为不锈钢、哑光黑色、光泽白色或铬。适用于家庭或商业场所,符合合同使用资格。意大利制造。
# 由于中文需要分词,此处直接计算整体长度
len(response)
97
LLM在遵循非常精确的字数限制方面表现得还可以,但并不那么出色。有时它会输出60或65个单词的内容,但这还算是合理的。这原因是 LLM 解释文本使用一种叫做分词器的东西,但它们往往在计算字符方面表现一般般。有很多不同的方法来尝试控制你得到的输出的长度。
问题二:文本关注在错误的细节上
我们会发现的第二个问题是,这个网站并不是直接向消费者销售,它实际上旨在向家具零售商销售家具,他们会更关心椅子的技术细节和材料。在这种情况下,你可以修改这个提示,让它更精确地描述椅子的技术细节。
解决方法:要求它专注于与目标受众相关的方面。
# 优化后的 Prompt,说明面向对象,应具有什么性质且侧重于什么方面
prompt = f"""
您的任务是帮助营销团队基于技术说明书创建一个产品的零售网站描述。
根据```标记的技术说明书中提供的信息,编写一个产品描述。
该描述面向家具零售商,因此应具有技术性质,并侧重于产品的材料构造。
使用最多50个单词。
技术规格: ```{fact_sheet_chair}```
"""
response = get_completion(prompt)
print(response)
这款中世纪风格办公家具系列包括文件柜、办公桌、书柜和会议桌等,适用于家庭或商业场所。可选多种外壳颜色和底座涂层,底座涂层选项为不锈钢、哑光黑色、光泽白色或铬。椅子可带或不带扶手,可选软地板或硬地板滚轮,两种座椅泡沫密度可选。外壳底座滑动件采用改性尼龙PA6/PA66涂层的铸铝,座椅采用HD36泡沫。原产国为意大利。
我可能进一步想要在描述的结尾包括产品ID。因此,我可以进一步改进这个提示,要求在描述的结尾,包括在技术说明中的每个7个字符产品ID。
# 更进一步
prompt = f"""
您的任务是帮助营销团队基于技术说明书创建一个产品的零售网站描述。
根据```标记的技术说明书中提供的信息,编写一个产品描述。
该描述面向家具零售商,因此应具有技术性质,并侧重于产品的材料构造。
在描述末尾,包括技术规格中每个7个字符的产品ID。
使用最多50个单词。
技术规格: ```{fact_sheet_chair}```
"""
response = get_completion(prompt)
print(response)
这款中世纪风格的办公家具系列包括文件柜、办公桌、书柜和会议桌等,适用于家庭或商业场所。可选多种外壳颜色和底座涂层,底座涂层选项为不锈钢、哑光黑色、光泽白色或铬。椅子可带或不带扶手,可选塑料前后靠背装饰或10种面料和6种皮革的全面装饰。座椅采用HD36泡沫,可选中等或高密度,座椅高度44厘米,深度41厘米。外壳底座滑动件采用改性尼龙PA6/PA66涂层的铸铝,外壳厚度为10毫米。原产国为意大利。产品ID:SWC-100/SWC-110。
问题三:需要一个表格形式的描述
以上是许多开发人员通常会经历的迭代提示开发的简短示例。我的建议是,像上一章中所演示的那样,Prompt 应该保持清晰和明确,并在必要时给模型一些思考时间。在这些要求的基础上,通常值得首先尝试编写 Prompt ,看看会发生什么,然后从那里开始迭代地完善 Prompt,以逐渐接近所需的结果。因此,许多成功的Prompt都是通过这种迭代过程得出的。我将向您展示一个更复杂的提示示例,可能会让您对ChatGPT的能力有更深入的了解。
这里我添加了一些额外的说明,要求它抽取信息并组织成表格,并指定表格的列、表名和格式,还要求它将所有内容格式化为可以在网页使用的 HTML。
# 要求它抽取信息并组织成表格,并指定表格的列、表名和格式
prompt = f"""
您的任务是帮助营销团队基于技术说明书创建一个产品的零售网站描述。
根据```标记的技术说明书中提供的信息,编写一个产品描述。
该描述面向家具零售商,因此应具有技术性质,并侧重于产品的材料构造。
在描述末尾,包括技术规格中每个7个字符的产品ID。
在描述之后,包括一个表格,提供产品的尺寸。表格应该有两列。第一列包括尺寸的名称。第二列只包括英寸的测量值。
给表格命名为“产品尺寸”。
将所有内容格式化为可用于网站的HTML格式。将描述放在<div>元素中。
技术规格:```{fact_sheet_chair}```
"""
response = get_completion(prompt)
print(response)
<div>
<h2>中世纪风格办公家具系列椅子</h2>
<p>这款椅子是中世纪风格办公家具系列的一部分,适用于家庭或商业场所。它有多种外壳颜色和底座涂层可选,包括不锈钢、哑光黑色、光泽白色或铬。您可以选择带或不带扶手的椅子,以及软地板或硬地板滚轮选项。此外,您可以选择两种座椅泡沫密度:中等(1.8磅/立方英尺)或高(2.8磅/立方英尺)。</p>
<p>椅子的外壳底座滑动件是改性尼龙PA6/PA66涂层的铸铝,外壳厚度为10毫米。座椅采用HD36泡沫,底座是五个轮子的塑料涂层铝底座,可以进行气动椅子调节,方便升降。此外,椅子符合合同使用资格,是您理想的选择。</p>
<p>产品ID:SWC-100</p>
</div>
<table>
<caption>产品尺寸</caption>
<tr>
<th>宽度</th>
<td>20.87英寸</td>
</tr>
<tr>
<th>深度</th>
<td>20.08英寸</td>
</tr>
<tr>
<th>高度</th>
<td>31.50英寸</td>
</tr>
<tr>
<th>座椅高度</th>
<td>17.32英寸</td>
</tr>
<tr>
<th>座椅深度</th>
<td>16.14英寸</td>
</tr>
</table>
# 表格是以 HTML 格式呈现的,加载出来
from IPython.display import display, HTML
display(HTML(response))
中世纪风格办公家具系列椅子
这款椅子是中世纪风格办公家具系列的一部分,适用于家庭或商业场所。它有多种外壳颜色和底座涂层可选,包括不锈钢、哑光黑色、光泽白色或铬。您可以选择带或不带扶手的椅子,以及软地板或硬地板滚轮选项。此外,您可以选择两种座椅泡沫密度:中等(1.8磅/立方英尺)或高(2.8磅/立方英尺)。
椅子的外壳底座滑动件是改性尼龙PA6/PA66涂层的铸铝,外壳厚度为10毫米。座椅采用HD36泡沫,底座是五个轮子的塑料涂层铝底座,可以进行气动椅子调节,方便升降。此外,椅子符合合同使用资格,是您理想的选择。
产品ID:SWC-100
宽度 | 20.87英寸 |
---|---|
深度 | 20.08英寸 |
高度 | 31.50英寸 |
座椅高度 | 17.32英寸 |
座椅深度 | 16.14英寸 |
本章的主要内容是 LLM 在开发应用程序中的迭代式提示开发过程。开发者需要先尝试编写提示,然后通过迭代逐步完善它,直至得到需要的结果。关键在于拥有一种有效的开发Prompt的过程,而不是知道完美的Prompt。对于一些更复杂的应用程序,可以对多个样本进行迭代开发提示并进行评估。最后,可以在更成熟的应用程序中测试多个Prompt在多个样本上的平均或最差性能。在使用 Jupyter 代码笔记本示例时,请尝试不同的变化并查看结果。
第四章、文本概括
引言
当今世界上有太多的文本信息,几乎没有人能够拥有足够的时间去阅读所有我们想了解的东西。但令人感到欣喜的是,目前LLM在文本概括任务上展现了强大的水准,也已经有不少团队将这项功能插入了自己的软件应用中。
本章节将介绍如何使用编程的方式,调用API接口来实现“文本概括”功能。
首先,我们需要OpenAI包,加载API密钥,定义getCompletion函数。
import openai
import os
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
openai.api_key = OPENAI_API_KEY
def get_completion(prompt, model="gpt-3.5-turbo"):
messages = [{"role": "user", "content": prompt}]
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=0, # 值越低则输出文本随机性越低
)
return response.choices[0].message["content"]
单一文本概括Prompt实验
这里我们举了个商品评论的例子。对于电商平台来说,网站上往往存在着海量的商品评论,这些评论反映了所有客户的想法。如果我们拥有一个工具去概括这些海量、冗长的评论,便能够快速地浏览更多评论,洞悉客户的偏好,从而指导平台与商家提供更优质的服务。
输入文本(中文翻译)
prod_review_zh = """
这个熊猫公仔是我给女儿的生日礼物,她很喜欢,去哪都带着。
公仔很软,超级可爱,面部表情也很和善。但是相比于价钱来说,
它有点小,我感觉在别的地方用同样的价钱能买到更大的。
快递比预期提前了一天到货,所以在送给女儿之前,我自己玩了会。
"""
限制输出文本长度
我们尝试限制文本长度为最多30词。
中文翻译版本
prompt = f"""
你的任务是从电子商务网站上生成一个产品评论的简短摘要。
请对三个反引号之间的评论文本进行概括,最多30个词汇。
评论: ```{prod_review_zh}```
"""
response = get_completion(prompt)
print(response)
可爱软熊猫公仔,女儿喜欢,面部表情和善,但价钱有点小贵,快递提前一天到货。
关键角度侧重
有时,针对不同的业务,我们对文本的侧重会有所不同。例如对于商品评论文本,物流会更关心运输时效,商家更加关心价格与商品质量,平台更关心整体服务体验。
我们可以通过增加Prompt提示,来体现对于某个特定角度的侧重。
侧重于运输
中文翻译版本
prompt = f"""
你的任务是从电子商务网站上生成一个产品评论的简短摘要。
请对三个反引号之间的评论文本进行概括,最多30个词汇,并且聚焦在产品运输上。
评论: ```{prod_review_zh}```
"""
response = get_completion(prompt)
print(response)
快递提前到货,熊猫公仔软可爱,但有点小,价钱不太划算。
可以看到,输出结果以“快递提前一天到货”开头,体现了对于快递效率的侧重。
侧重于价格与质量
中文翻译版本
prompt = f"""
你的任务是从电子商务网站上生成一个产品评论的简短摘要。
请对三个反引号之间的评论文本进行概括,最多30个词汇,并且聚焦在产品价格和质量上。
评论: ```{prod_review_zh}```
"""
response = get_completion(prompt)
print(response)
可爱软熊猫公仔,面部表情友好,但价钱有点高,尺寸较小。快递提前一天到货。
可以看到,输出结果以“质量好、价格小贵、尺寸小”开头,体现了对于产品价格与质量的侧重。
关键信息提取
在2.2节中,虽然我们通过添加关键角度侧重的Prompt,使得文本摘要更侧重于某一特定方面,但是可以发现,结果中也会保留一些其他信息,如价格与质量角度的概括中仍保留了“快递提前到货”的信息。有时这些信息是有帮助的,但如果我们只想要提取某一角度的信息,并过滤掉其他所有信息,则可以要求LLM进行“文本提取(Extract)”而非“文本概括(Summarize)”。
中文翻译版本
prompt = f"""
你的任务是从电子商务网站上的产品评论中提取相关信息。
请从以下三个反引号之间的评论文本中提取产品运输相关的信息,最多30个词汇。
评论: ```{prod_review_zh}```
"""
response = get_completion(prompt)
print(response)
快递比预期提前了一天到货。
多条文本概括Prompt实验
在实际的工作流中,我们往往有许许多多的评论文本,以下展示了一个基于for循环调用“文本概括”工具并依次打印的示例。当然,在实际生产中,对于上百万甚至上千万的评论文本,使用for循环也是不现实的,可能需要考虑整合评论、分布式等方法提升运算效率。
review_1 = prod_review
# review for a standing lamp
review_2 = """
Needed a nice lamp for my bedroom, and this one \
had additional storage and not too high of a price \
point. Got it fast - arrived in 2 days. The string \
to the lamp broke during the transit and the company \
happily sent over a new one. Came within a few days \
as well. It was easy to put together. Then I had a \
missing part, so I contacted their support and they \
very quickly got me the missing piece! Seems to me \
to be a great company that cares about their customers \
and products.
"""
# review for an electric toothbrush
review_3 = """
My dental hygienist recommended an electric toothbrush, \
which is why I got this. The battery life seems to be \
pretty impressive so far. After initial charging and \
leaving the charger plugged in for the first week to \
condition the battery, I've unplugged the charger and \
been using it for twice daily brushing for the last \
3 weeks all on the same charge. But the toothbrush head \
is too small. I’ve seen baby toothbrushes bigger than \
this one. I wish the head was bigger with different \
length bristles to get between teeth better because \
this one doesn’t. Overall if you can get this one \
around the $50 mark, it's a good deal. The manufactuer's \
replacements heads are pretty expensive, but you can \
get generic ones that're more reasonably priced. This \
toothbrush makes me feel like I've been to the dentist \
every day. My teeth feel sparkly clean!
"""
# review for a blender
review_4 = """
So, they still had the 17 piece system on seasonal \
sale for around $49 in the month of November, about \
half off, but for some reason (call it price gouging) \
around the second week of December the prices all went \
up to about anywhere from between $70-$89 for the same \
system. And the 11 piece system went up around $10 or \
so in price also from the earlier sale price of $29. \
So it looks okay, but if you look at the base, the part \
where the blade locks into place doesn’t look as good \
as in previous editions from a few years ago, but I \
plan to be very gentle with it (example, I crush \
very hard items like beans, ice, rice, etc. in the \
blender first then pulverize them in the serving size \
I want in the blender then switch to the whipping \
blade for a finer flour, and use the cross cutting blade \
first when making smoothies, then use the flat blade \
if I need them finer/less pulpy). Special tip when making \
smoothies, finely cut and freeze the fruits and \
vegetables (if using spinach-lightly stew soften the \
spinach then freeze until ready for use-and if making \
sorbet, use a small to medium sized food processor) \
that you plan to use that way you can avoid adding so \
much ice if at all-when making your smoothie. \
After about a year, the motor was making a funny noise. \
I called customer service but the warranty expired \
already, so I had to buy another one. FYI: The overall \
quality has gone done in these types of products, so \
they are kind of counting on brand recognition and \
consumer loyalty to maintain sales. Got it in about \
two days.
"""
reviews = [review_1, review_2, review_3, review_4]
for i in range(len(reviews)):
prompt = f"""
Your task is to generate a short summary of a product \
review from an ecommerce site.
Summarize the review below, delimited by triple \
backticks in at most 20 words.
Review: ```{reviews[i]}```
"""
response = get_completion(prompt)
print(i, response, "\n")
0 Soft and cute panda plush toy loved by daughter, but a bit small for the price. Arrived early.
1 Affordable lamp with storage, fast shipping, and excellent customer service. Easy to assemble and missing parts were quickly replaced.
2 Good battery life, small toothbrush head, but effective cleaning. Good deal if bought around $50.
3 The product was on sale for $49 in November, but the price increased to $70-$89 in December. The base doesn't look as good as previous editions, but the reviewer plans to be gentle with it. A special tip for making smoothies is to freeze the fruits and vegetables beforehand. The motor made a funny noise after a year, and the warranty had expired. Overall quality has decreased.
序节请见下篇博文。
商业转载请联系作者获得授权,非商业转载请注明本文出处及文章链接