docker 部署 n8n 及汉化教程
n8n 是一款开源、灵活且高度可定制的工作流自动化平台,其核心理念是通过可视化拖拽界面将不同的应用、服务、API或数据源连接起来,实现复杂的自动化任务,而无需编写大量代码。
n8n 的核心功能
- 完全开源免费:n8n 采用 MIT 开源许可,源代码托管于 GitHub,用户可自由查看、修改与部署。
- 可视化工作流编排:通过直观的拖拽式界面构建多步骤自动化流程,降低技术门槛。
- 丰富的集成生态:官方支持 1700+ 预设模板 和 数百个原生节点(如 Slack、Google Sheets、Notion、Webhook 等),同时支持自定义节点开发。
- 灵活的触发机制:支持定时任务、事件驱动、手动触发、Webhook、API 调用等多种触发方式。
- 强大的逻辑控制:支持条件分支(if/else)、循环、错误处理等复杂逻辑,可构建企业级自动化流程。
- 部署方式灵活:既可本地部署(Docker、本地 Node.js 环境),也可自托管于私有云/公有云,或使用其官方SaaS 云服务(含 14 天试用)。
代码与无代码融合:在可视化流程中可随时插入 JavaScript 或 Python 脚本,实现高度定制化逻辑。
它能解决什么问题
- 个人效率提升:自动备份笔记、定时抓取网页内容、邮件自动化等。
- 团队协作自动化:将 Slack 消息同步至 Notion、自动创建 Jira 工单、审批流提醒等。
- 数据集成与处理:聚合多个 API 数据、清洗并写入数据库、生成报表等。
- AI 工作流构建:集成 LLM(如 OpenAI、本地模型),构建多步骤 AI Agent,实现“用自然语言操作业务系统”。
开源地址
Github:点此跳转
部署教程
安装要求最低配置:1C2G,建议 2C4G 使用体验更好。
使用 docker-compose 直接编排,如果你还不知道什么是 docke 请看我博客早期文章。
1、创建必要目录
# 创建目录
mkdir n8n && cd n8n
# 创建汉化源码目录
mkdir n8n-editor-ui2、下载汉化包,下载对应的版本,点此下载
# 进入汉化目录
cd n8n-editor-ui
# 这里以2.1.4为例
wget https://github.com/other-blowsnow/n8n-i18n-chinese/releases/download/n8n%402.1.4/editor-ui.tar.gz
tar zxvf editor-ui.tar.gz3、编写docker-compose文件
# 切换到 n8n 部署目录
cd ..
# 写部署内容
cat > docker-compose.yaml << 'EOF'
services:
n8n:
image: n8nio/n8n:2.1.4
container_name: n8n
restart: unless-stopped
ports:
- "5678:5678"
environment:
- N8N_HOST=0.0.0.0
- N8N_PORT=5678
- N8N_BASIC_AUTH_ACTIVE=true
- N8N_BASIC_AUTH_USER=lcry
- N8N_BASIC_AUTH_PASSWORD=www.51it.wang
- GENERIC_TIMEZONE=Asia/Shanghai
- N8N_DEFAULT_LOCALE=zh-CN
- N8N_RUNNERS_ENABLE=true
- N8N_SECURE_COOKIE=false
volumes:
- ./n8n-editor-ui/dist:/usr/local/lib/node_modules/n8n/node_modules/n8n-editor-ui/dist
- ./n8n_data:/home/node/.n8n
EOF4、启动
docker-compose up -d访问
访问 http://服务器端口:5678 ,然后直接注册账号进行使用。
登录之后就开始使用了,汉化版本
更多使用请自行网上学习,官方也提供很多示例。
下面给一个简单的示例,实现 RSS 采集本博客文章然后使用 AI 总结。直接将文件保存为 n8n示例.json 然后通过 n8n 导入文件的方式后配置OpenAI密钥信息即可使用
{
"name": "n8n 示例",
"nodes": [
{
"parameters": {},
"type": "n8n-nodes-base.manualTrigger",
"typeVersion": 1,
"position": [
0,
-32
],
"id": "b71f47cd-abd8-4ddd-af2f-a78018688310",
"name": "When clicking ‘Execute workflow’"
},
{
"parameters": {
"url": "https://www.51it.wang/feed/",
"options": {}
},
"type": "n8n-nodes-base.rssFeedRead",
"typeVersion": 1.2,
"position": [
224,
-32
],
"id": "861d91de-ddbe-4002-86a0-482d509c24c1",
"name": "RSS Read"
},
{
"parameters": {
"url": "={{ $json.link }}",
"options": {}
},
"type": "n8n-nodes-base.httpRequest",
"typeVersion": 4.3,
"position": [
448,
-32
],
"id": "26788ef7-caae-4fd4-ae19-4bc2c81cfe4d",
"name": "HTTP Request"
},
{
"parameters": {
"promptType": "define",
"text": "总结一下内容",
"messages": {
"messageValues": [
{
"type": "HumanMessagePromptTemplate",
"message": "={{ $json.data }}"
}
]
},
"batching": {}
},
"type": "@n8n/n8n-nodes-langchain.chainLlm",
"typeVersion": 1.8,
"position": [
720,
-80
],
"id": "b9b46e3d-a1dd-49d6-adab-a19ff9e38e24",
"name": "Basic LLM Chain"
},
{
"parameters": {
"langfuseMetadata": {},
"model": {
"__rl": true,
"value": "lcry-qwen2.5-free",
"mode": "list",
"cachedResultName": "lcry-qwen2.5-free"
},
"options": {}
},
"type": "n8n-nodes-openai-langfuse.lmChatOpenAiLangfuse",
"typeVersion": 3,
"position": [
960,
112
],
"id": "047b4931-8f05-45d5-b288-cc448d8e39ea",
"name": "OpenAI Chat Model with Langfuse",
"credentials": {
"openAiApiWithLangfuseApi": {
"id": "tNfaDQ5KQylfOAhB",
"name": "openAi With Langfuse account"
}
}
}
],
"pinData": {},
"connections": {
"When clicking ‘Execute workflow’": {
"main": [
[
{
"node": "RSS Read",
"type": "main",
"index": 0
}
]
]
},
"RSS Read": {
"main": [
[
{
"node": "HTTP Request",
"type": "main",
"index": 0
}
]
]
},
"HTTP Request": {
"main": [
[
{
"node": "Basic LLM Chain",
"type": "main",
"index": 0
}
]
]
},
"OpenAI Chat Model with Langfuse": {
"ai_languageModel": [
[
{
"node": "Basic LLM Chain",
"type": "ai_languageModel",
"index": 0
}
]
]
}
},
"active": false,
"settings": {
"executionOrder": "v1",
"availableInMCP": false
},
"versionId": "1bbaf13d-af85-41f9-983a-c85c850b65c1",
"meta": {
"templateCredsSetupCompleted": true,
"instanceId": "26ed29e74e799b41704f9f0a73e916b696773d6c294ba71218c0f956db33d456"
},
"id": "yMM7JJqmf20RscY8",
"tags": []
}总结
本文主要带大家使用 docker-compose 部署 n8n,最近慢慢将自己近几年 AI 相关使用心得以及部署基础设施分享出来,慢慢沉淀下来,也希望大家也能通过 AI 实实在在提高效率以及感受 AI 带来的乐趣与便捷。
商业转载请联系作者获得授权,非商业转载请注明本文出处及文章链接

